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eIngestion of data:
eCataloging of Structured and Unstructured Data:
Data Processing: Scalable

Data Management: Construction and management of
metadata catalogs and data (often distributed);

*Data Discovery:
eData Access:

*Data Distribution, Computation and Analysis: Support
for analysis and services (e.g., subsetting) on the
data; move towards automated data discovery
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Development of automated pipelines built on workflows

Constructing highly distributed, multi-organizational
systems

Sharing of data and services which allow for the
discovery, access, and transformation of data

Addressing complex modeling, inter-disciplinary science
and decision support needs

Changing the way in which data analysis is performed
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- The described outputs for all

fori=1...100

70% training
30% test

combination of models and parameters pl
- Mean performance metrics across runs| son ooy
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Feature filter on training set
expression variance,
mean expression

l

Feature selection on training set
Im-t, Im-abst, rf

l

Maximum number of features
25, 50, 100

Evaluate features performance

on internal test set

Naive Bayes, Weighted Voting,
Support Vector Machine
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PBS scripts (sh) submitting R codes

5 modules

1. Discovery set split (g samples, p variables, m
genes; 80/20, 70/30 etc. splits)

2. Gene filter (class independent characteristics)

3. Feature selection (prioritize features based on
phenotype)

4. Biomarker size (select 25/50/100 etc. features)
5. Prediction method (naive bayes, SVM etc.)
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ff=c("var","mean”)

fs=c("Im-t","Im-abst"”,"rf”’)

bs=c(25,50,100)
cl=c("wv","nb","svm")

(feature filter, feature selection,
biomarker size, classification)

n(for iterations) = n(ff)*n(fs)*n(bs)*n(cl)
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The science inferences/conclusions use such
output as a starting point. Streamlining that
through web-based visual analytics can be a
future goal.
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* Open Source

* Modular management and
processing framework

* Workflow manager
 Resource manager

Workflow Resource File
DATA STAGING Crawler | \onager || Manager | | Manager —)EATAARCHIVE |

Custom Metadata
Algorithms Extractors
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* Quter loop parallelized using workflow/
resource managers

« Concurrent runs being explored
(simultaneous read/write/process may be
possible)

* Inner (for) loop to be parallelized within R
or through a split
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* First OODT task is used to submit the R
scripts to gsub

* qgsub distributes the R script execution
across available node (one iteration on each
node)

« Second OODT task waits for summary file

output to be available, then publishes it to
the data archive and metadata catalog
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* First OODT task is used to distribute
computation across available nodes (one
iteration on each node), as separate sub-
workflows

« Each OODT sub-workflow running on a node
executes

* R script to process one iteration

* Another OODT task runs the R script to
generate the summary file

* Final OODT task waits for summary file output
to be available, then publishes it to the data
archive and metadata catalog
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* Biggest gain would be possible be using
individual processors in a GPU for each
iteration of the for loop

* This has the potential to speed up the
computation by 100 to 1000 times

* This will bring down execution time from
o(week) to o(hour)
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parallelized
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Output streamlining

> Future Visualization
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