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What is longitudinal biomarker data?

• Biomarker measured in serial samples from each individual.

• CA-125 measured annually for ovarian cancer screening.

• CEA measured monthly for colon cancer recurrence after initial treatment.
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Key Idea: Change in biomarker over time may inform about disease onset.

• Example: a large change from relatively stable levels.
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Key Idea: Change in biomarker over time may inform about disease onset.

• Example: consistent trend away from baseline.
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Not talking about markers

• with undetectable levels in controls

• germline gene variants or other lifelong stable measures of risk

Talking about markers

• present in people without cancer (controls)

• controls tend to have their own individual set-point
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Talking about

• CA-125 for ovarian cancer screening (Skates).

• PSA for prostate cancer screening (Zheng).

• AFP, DCP for liver cancer screening (Tayob).
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Intra-class Correlation Coefficient (ICC)

ICC =
variation between subjects
var(between) + var(within)
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Illustration of potential added value from longitudinal biomarker

• Stored annual samples

• Could we have detected cases that occurred after start of year 3 using markers
measured up to year 3?

• Single time point marker: M3

• Longitudinal marker: ∆3 = M3 − ave(M1, M2)
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Low within-subject variation in controls (ICC=0.90)
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Moderate within-subject variation (ICC=0.70)
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High within-subject variation (ICC=0.30)
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Recommendations

• Markers that show mild/moderate performance at a single time point

• Consider if there is potential for better performance with longitudinal ascertainment.

• Statistical considerations.

– Do a preliminary study using serial samples from controls to assess ICC

– This is cheap compared with larger study to assess biomarker performance for
detecting disease in cases.

– Assay variability.

• Feasibility considerations and complications

– Will people return to provide serial samples?

– Algorithms to accommodate missing time points.
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Algorithms for using longitudinal biomarker data with real data in
real applications

• Ovarian cancer Steven Skates

• Prostate cancer Yingye Zheng

• Liver cancer Mabihah Tayob
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Appendix

AUC(M3) = 0.60 = Φ(a/
√

2)

⇒ ROC(t) = Φ(a + bΦ−1(t))

To generate data

Mij = I[i = 1]Dj + µj + εij
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i = time j = subject

Mij = I[i = 3]Dj + µj + εij

εij = N(0,σ2
ε) · σ2

ε = 1

·µj = N(0,σ2
µ) σ2

µ =
ICC

1− Icc
Dj = IM × µD

IM = binary

prob = 100% marker in 100% cases

= 50% marker in 50% cases

µD = a×
√

(σ2
µ + σ2

ε)
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