Recent advances on multiple tumorigenic cascades involved in prostatic cancer progression and targeting therapies.
Abstract
Recent advances on differently-expressed gene products and their functions during the progression from localized androgen-dependent states into androgen-independent and metastatic forms of prostate cancer are reported. The expression levels of numerous oncogenes and tumor suppressor genes in distinct prostatic cancer epithelial cell lines and tissues relative to normal prostate cells are described. This is carried out to identify the signaling elements that are altered during the initiation, progression and metastatic process of prostate cancer. Additional information on the interactions between certain deregulated signaling pathways such as androgen receptor (AR), estrogen receptors, epidermal growth factor receptor (EGFR), hedgehog and Wnt/beta-catenin cascades in controlling the proliferation, survival and invasion of tumor prostate epithelial cells during the disease progression is described. The emphasis is on the critical functions of the AR and EGF-EGFR systems at all stages during prostate carcinogenesis. Of therapeutic interest, new strategies for the diagnosis and treatment of localized and metastatic forms of prostate cancer by targeting multiple tumorigenic signaling elements are also reported.