Differential expression of CD10 in prostate cancer and its clinical implication.
Abstract
CD10 is a transmembrane metallo-endopeptidase that cleaves and inactivates a variety of peptide growth factors. Loss of CD10 expression is a common, early event in human prostate cancer; however, CD10 positive cancer cells frequently appear in lymph node metastasis. We hypothesize that prostate tumors expressing high levels of CD10 have a more aggressive biology with an early propensity towards lymph node metastasis.
Eighty-seven patients, 53 with and 34 without pathologically organ confined prostate cancer at the time of radical prostatectomy (RP), were used for the study. Fourteen patients with lymph node metastasis found at the time of surgery were identified and included in this study. Serial sections from available frozen tumor specimens in OCT were processed for CD10 immunohistochemistry. Cancer glands were graded for the presence and intensity of CD10 staining, and overall percentage of glands staining positive was estimated. Clinical characteristics including pre- and post-operative PSA and Gleason score were obtained. A similar study as a control for the statistical analysis was performed with CD13 staining. For statistical analysis, strong staining was defined as > 20% positivity based on the observed maximum separation of the cumulative distributions.
CD10 expression significantly correlated with Gleason grade, tumor stage, and with pre-operative serum PSA. Seventy percent of RP specimens from patients with node metastasis showed strong staining for CD10, compared to 30% in the entire cohort (OR = 3.4, 95% CI: 1.08-10.75, P = 0.019). Increased staining for CD10 was associated with PSA recurrence after RP. CD13 staining did not correlate significantly with any of these same clinical parameters.
These results suggest that the expression of CD10 by prostate cancer corresponds to a more aggressive phenotype with a higher malignant potential, described histologically by the Gleason score. CD10 offers potential clinical utility for stratifying prostate cancer to predict biological behavior of the tumor.
Authors
- Dall'Era MA
- Liu AY
- Porter MP
- Sherertz TM
- Siegel AF
- True LD