Increased throughput and reduced carryover of mass spectrometry-based proteomics using a high-efficiency nonsplit nanoflow parallel dual-column capillary HPLC system.

Abstract

We report a new design of a fully automated, high-efficiency parallel nonsplit nanoflow capillary HPLC system, coupled on-line with linear ion trap (LTQ) and high performance nanoelectrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (nanoESI LTQ-FTICR MS). The system, intended for high-throughput proteome analysis of complex protein mixtures, notably serum and plasma, consists of two reversed-phase trap columns for large volume sample injection with high speed sample loading and desalting and two reversed-phase analytical capillary columns. Through a nanoscale two-position, 10-port switching valve, the whole system is terminated by a 10 microm i.d. of nanoemitter mounted on the nanoelectrospray source in front of the sampling cone of the LTQ-FTICR MS. Gradient elution to both nanoflow-rate capillary columns is simultaneously delivered by a single HPLC system via two independent binary gradient pump systems. The parallel capillary column approach eliminates the time delays for column regeneration/equilibration since one capillary column is used for separating the sample mixtures and delivering the separated fractions to the MS, while the other capillary column is being regenerated and equilibrated. The reproducibility of retention time and peak intensity of the present automated parallel nanoflow-rate capillary HPLC system is comparable to that obtained using a single column configuration. Replicate injections of tryptic digests indicated that this system provided good reproducibility of retention time and peak area on both columns with average CV values of less than 1.08% and 7.04%, respectively. Throughput was increased to 100% for 2-h LC-MS analysis compared to the single capillary column LC-MS pipeline. Application of this system is demonstrated in a plasma proteomic study. A total of 312 868 MSMS events were acquired and 1564 proteins identified with high confidence (Protein Prophet > or = 0.9, and peptides matched > or = 2). Comparison of a series of plasma fractions run using the single-column LC-MS versus the parallel-column LC-MS demonstrated that parallel-column LC-MS system significantly reduced the sample carryover, improved MS data quality and increased the number of MS/MS sequence scan events.

EDRN PI Authors
Medline Author List
  • Hanash SM
  • Wang H
PubMed ID
Appears In
J Proteome Res, 2008 Jul, volume 7 (issue 7)