Aspirin and the risk of colorectal cancer in relation to the expression of 15-hydroxyprostaglandin dehydrogenase (HPGD).
Abstract
Aspirin use reduces the risk of colorectal neoplasia, at least in part, through inhibition of prostaglandin-endoperoxide synthase 2 (PTGS2, cyclooxygenase 2)-related pathways. Hydroxyprostaglandin dehydrogenase 15-(nicotinamide adenine dinucleotide) (15-PGDH, HPGD) is down-regulated in colorectal cancers and functions as a metabolic antagonist of PTGS2. We hypothesized that the effect of aspirin may be antagonized by low 15-PGDH expression in the normal colon. In the Nurses' Health Study and the Health Professionals Follow-Up Study, we collected data on aspirin use every 2 years and followed up participants for diagnoses of colorectal cancer. Duplication-method Cox proportional, multivariable-adjusted, cause-specific hazards regression for competing risks data was used to compute hazard ratios (HRs) for incident colorectal cancer according to 15-PGDH mRNA expression level measured in normal mucosa from colorectal cancer resections. Among 127,865 participants, we documented 270 colorectal cancer cases from which we could assess 15-PGDH expression. Compared with nonuse, regular aspirin use was associated with lower risk of colorectal cancer that developed within a background of colonic mucosa with high 15-PGDH expression [multivariable HR, 0.49; 95% confidence interval (CI), 0.34 to 0.71], but not with low 15-PGDH expression (multivariable HR, 0.90; 95% CI, 0.63 to 1.27) (P for heterogeneity = 0.018). Regular aspirin use was associated with lower incidence of colorectal cancers arising in association with high 15-PGDH expression, but not with low 15-PGDH expression in normal colon mucosa. This suggests that 15-PGDH expression level in normal colon mucosa may serve as a biomarker that may predict stronger benefit from aspirin chemoprevention.
EDRN PI Authors
Medline Author List
- Chan AT
- Cho E
- Fink SP
- Fuchs CS
- Giovannucci E
- Jung S
- Kuchiba A
- Markowitz SD
- Nishihara R
- Ogino S
- Wu K
- Yamauchi M